On False Data Injection Attacks against Distributed Energy Routing in Smart Grid

Jie Lin, Wei Yu, Xinyu Yang, Guobin Xu, and Wei Zhao

Abstract

Smart Grid is a new type of power grid that will provide reliable, secure, and efficient energy transmission and distribution. Smart grid shall integrate the distributed energy resources and intelligently transmit energy to meet the requests from users. Hence, ways to secure the distributed energy routing process that efficiently utilizes the distributed energy resources and minimizes the energy transmission overhead is essential in smart grid. To address this issue, we study the vulnerability of distributed energy routing process and investigate novel false data injection attacks against the energy routing process. We consider a few general attacks, in which the adversary may manipulate the quantity of energy supply, the quantity of energy response, and the link state of energy transmission. The forged data injected by those attacks will cause imbalanced demand and supply, increase the cost for energy distribution, and disrupt the energy distribution. We formally model these attacks and quantitatively analyze their impact on energy distribution in the smart grid. Through extensive simulation, our data show that our proposed attacks can effectively disrupt the effectiveness of energy distribution process, posing significant supplied energy loss, energy transmission cost and the number of outage users. To the best of our knowledge, our work is the first to systematically study the false data injection attacks against distributed energy routing processing in smart grid.

Keywords

Smart grid, Distributed energy routing, False data injection attacks, Energy distribution.

I. INTRODUCTION

The smart grid uses modern advanced communication technologies to make the power grid more efficient, reliable, secure and resilient. In the US and many other countries, the modernization of the electric power grid is vital to increasing the energy efficiency, transiting to renewable energy sources, reducing greenhouse gas emissions, and building a sustainable economy that ensures prosperity for current and future generations [1]. To this end, the development of smart grid has received a renewed attention recently [1], [4]. Smart grid is one typical example of cyber-physical system (CPS) [3], which integrates a physical power transmission system with the cyber process of network computing and communication.

The main goal of the smart grid is to effectively utilize the distributed energy resources to meet energy usage from users. Generally speaking, users are connected to the smart grid via energy and communication links and can generate and store energy with their own energy-generation and energy-storage equipments. Fig. 1 shows the example structure of a smart grid proposed by the National Institute of Standard Technology (NIST) [5]. To resist the imbalance between the energy supply and demand, some nodes, namely energy-suppliers, could provide residual energy to other nodes, namely energy-demanders. Obviously, transmitting energy from energy suppliers to energy-demanders will incur energy loss and resource consumption cost during the transmission.

To fully utilize the distributed energy resources and minimize the energy transmission cost caused by energy transmission among nodes, energy transmission needs to be distributed and lots of research efforts have been made in this direction [15], [19], [11], [23], [7], [18]. For example, Rao et al. [19] studied the problem of minimizing the total electricity cost under multiple electricity markets environment. Baghaie et al. [7] proposed a distributed energy routing algorithm, which is distributed, agile to failures, and provably maximizes the capacity of the existing power-line resources. We developed the distributed energy routing algorithms [15] to determine the optimal paths for energy transmission based on the demands and requests from nodes, leading to the minimum cost of energy transmission. While these research efforts can improve the smart grid operational efficiency, the potential risk of security needs to be seriously investigated before deploying these techniques into the smart grid.
In this paper, we deeply investigate the damage effects of false data injection attacks on the distributed energy routing process. There have been numerous efforts to mitigate false data injection attacks in smart grid recently [17], [20], [12], [25], [14]. For example, Liu et al. proposed the false data injection attack against the state estimation of power system [17]. Nevertheless, the risks and impact of false data injection attacks against the distributed energy routing in smart grid have not been studied in the past. To fulfill this gap, in this paper we study the vulnerability of distributed energy routing process, investigate novel false data injection attacks against distributed energy routing, and systematically model and analyze their impact on energy routing process. To the best of our knowledge, this paper is the first to understand the false data injection attacks against energy routing in the smart grid.

We first review the energy routing schemes, and describe the workflow of distributed energy distribution. We then study the vulnerabilities of the distributed energy routing process and investigate a number of generic attacks, in which the adversary can manipulate the quantity of energy supply, the quantity of energy response, and the link state of energy transmission. The forged data injected by attacks will cause imbalanced demand and response and incur the increased cost for energy transmission and distribution and disrupt the stability of energy service in smart grid.

We formally model the attacks and quantitatively analyze their impact on the distributed energy routing process. We consider several metrics, including the supplied energy loss, the increased energy transmission cost, and the number of outage users. Based on the topology of the US smart grid, we simulate the impact of these attacks. Our data confirm our theoretical findings well and illustrate that our proposed attacks can effectively disrupt the effectiveness of distributed energy routing, posing significant supplied energy loss, an increase in energy transmission and distribution cost and the number of outage users.

The remainder of the paper is organized as follows: In Section II, we present network and threat models. In Section III, we review the distributed energy routing process and detailed workflow and investigate the false data injection attacks on the energy routing process. In Section IV, we quantitatively analyze the impact of the proposed attacks on the efficiency of the distributed energy routing process. In Section V, we show experimental results to validate the effectiveness of those attacks. We review the related work in Section VI and conclude the paper in Section VII.

II. NETWORK AND THREAT MODELS

In a smart grid, a number of users are connected to the grid via communication and energy transmission links. Each user in a smart grid can transform the distributed energy resources (e.g., wind energy, solar energy, and others) into power and store the power locally, and energy-rich users can provide power to energy-poor users. Fig. 2 illustrates a graph model of a smart grid. The nodes here represent the energy users and/or providers. Due to the difference in locations and efficiency of energy generation, each node in the grid generates and consumes different quantities of energy. When a node consumes more energy than it can generate, the node is denoted as an energy demand-node and needs to pull energy from the grid. To the contrary, when a node consumes less energy than it generates, the node is denoted as an energy supply-node and can push residual energy into grid and meet the demand from demand-nodes. The energy distribution among nodes can balance the energy supply and demand in smart grid.

Via the wireless network or home area network (HAN), measuring components, such as smart meter and other devices, can be used to measure the energy consumption caused by all electric appliances, the energy generation and the energy storage. In this paper, we use nodes to represent users. The measuring components can determine
whether the node should be a supply-node or demand-node. To balance the demand and response, the node could connect to the smart grid and communicate with other nodes, sharing the measurements, energy demands and requests.

Because the measurement component supported by smart equipment such as smart meter, plays an important role in smart grid, it can also be a target for cyber attacks. Because those measuring devices may connected through open network interfaces, the adversary can possibly launch network attacks against those devices [9]. The adversary may modify data and compromise the measuring component via injecting malicious codes into the memory of measuring component [21]. The adversary then injects false energy demand and supply messages into the grid via the compromised measuring components. Note that, if a node is denoted as compromised node, we mean that the measuring component of the node is compromised by the adversary. In the reminder of the paper, we will use the node to introduce energy routing process and associated attacks.

III. DISTRIBUTED ENERGY ROUTING AND FALSE DATA INJECTION ATTACKS

In this section, we first give the overview of distributed energy routing schemes and present the detailed workflow of distributed energy distribution. We then introduce two general types of false data injection attacks: (i) injecting false energy data, and (ii) injecting false link-state data.

A. Overview of Distributed Energy Routing Schemes

In the energy generation and consumption processes, the nodes in the grid may be imbalanced. To resist the imbalance, some nodes could be supply-nodes and provide residual energy to demand-nodes. Nevertheless, if multiple demand-nodes exist in the grid, they would affect each other to obtain energy, posing inefficiency in energy distribution. To address this issue, we proposed novel distributed energy routing schemes [15] to determine the optimal energy routes for transmitting energy among nodes in the grid. With the optimal energy routes, supply-nodes can effectively supply energy to demand-nodes with low transmission cost. Notice that we choose the energy transmission cost as the optimization objective to demonstrate the effectiveness of our developed schemes. Nevertheless, our solution is generic and other types of resource optimization objectives can be easily applied as well. The details of our proposed energy routing schemes can be found in [15].

The basic idea of our distributed energy routing schemes is described below. In the grid, multiple supply-nodes, demand-nodes, communication links, and energy links are considered and energy links connecting to the nodes have capacity constraints. Deriving the optimal energy routes becomes a challenging task because numerous constraints need to be satisfied simultaneously. First, to ensure the reliable supply of energy for demand-nodes, the input energy of demand-nodes and energy transmitted by the energy links to which demand-nodes connect should be equal to their demanded energy. Second, the output energy of supply-nodes should be no more than the energy they can provide. Third, the energy transmission on energy link should be limited to the capacity determined by energy link’s physical characteristics.

In the energy transmission, the supply-node does not care about where the energy will be transmitted and the demand-node does not care where the received energy originated came from. We only need to determine the amount of energy that each link should transmit based on the above constraints. Hence, care must be taken to determine how much energy each link should transmit, rather than where the energy comes and goes. According to the above analysis, the problem of selecting the optimal routes can be formalized as an optimization problem, which can determine the amount of energy transmitted through energy links based on the supply and demand requests of all nodes along with energy link capacity, and the overall transmission cost is minimized. The formalization of distributed energy routing schemes is briefly listed below.

\[
\text{Objective. Min } \left\{ \text{Cost} = \frac{1}{2} \sum_{L_{ij} \in L} (|E_{ij}(n)| \cdot Cost_{ij}) \right\}
\]

\[
\text{S.t. } \left\{ \begin{array}{l}
\forall v \in N_P, \sum_{i \in N_v} E_{vi} \leq P_v \\
\forall u \in N_D, \sum_{j \in N_u} E_{uj} = -D_u \\
\forall L_{ij} \in L, E_{ij} = -E_{ji}
\end{array} \right.
\] (1)
where i and j are the IDs of nodes, $Cost_{ij}$ is the transmission cost on energy link L_{ij}, E_{ij} is the energy needed to transmission on energy link L_{ij}, L is the set of all energy links in the grid, N_P is the set of supply-nodes, N_D is the set of demand-nodes, N_u and N_v are the sets of neighbor-nodes of node v and node u, respectively, and P_v is the energy that supply-node v can provide. D_u is the request energy of demand-node u. Based on Equation (1), the optimal energy routes can be obtained. The energy that each supply-node needs to provide for demand-nodes can be denoted as

$$P'_v = \sum_{i \in N_v} E_{vi}. \quad (2)$$

B. Energy Distribution Process

Recall that the measuring component at the node (e.g., smart meter) plays an important role in the energy distribution process, and it can determine whether the node belongs to a supply-node or demand-node over time. Based on the role of the node, it will coordinate with each other via communication networks and ensure that the energy will be distributed efficiently to meet the demand and supply with the minimal overhead. The basic workflow of energy routing process is described below. Note that, we assume that the energy transmission among nodes is implemented periodically. All notations used in this paper are defined in Table I.

Step 1: At the beginning of new cycle $(t+1)$, a measuring component determines the local node’s energy storage S_u, and predicts the energy generation G_u and energy consumption C_u in the next cycle.

Step 2: Based on the result of **Step 1**, if the node is supply-node, the measuring component can determine the quantity of energy, say P_u, which it can provide to the grid. We have $P_u = S_u - C_u$. If the node is demand-node, the measuring component determines the quantity of energy, say D_u, which it needs to obtain from the grid. We have $D_u = C_u - S_u - G_u$.

Step 3: When a node is identified as a demand-node, its measuring component broadcasts the energy request message including the demanded energy, say D_u, to other nodes in the grid.

Step 4: All nodes receiving the request message will send the response message back to the demand-node. The response message includes the energy that the node can supply, the set of cost for transmitting the energy on all energy links that the node connects to, and the set of states of all energy links that node connects to, say P_v, $Cost_v$, LS_v, respectively. Note that, P_v can be zero, representing the node could provide no energy into the grid.

Step 5: When the demand-node u receives the response messages from all nodes, it derives the optimal energy routes via the distributed energy routing process [15]. The optimal energy routing process will guarantee the requested energy with minimum resources to be consumed. Then, the demand-node sends the routes, obtained by energy routing, for all nodes, which includes the energy to be transmitted on all energy links.

Step 6: Based on the routes generated by the energy routing schemes, each node either supplies the scheduled energy for each connected energy link or gets requested energy from each connected energy link.

C. False Data Injection Attacks

The distributed energy routing schemes discussed above can efficiently utilize the distributed energy resources, provide the reliable supply of energy to all nodes in the grid, and lead to the minimum energy transmission cost. Nevertheless, the potential risk of cyber attacks needs to be seriously considered before deploying these technologies into the grid. Following this direction, we now systematically investigate the false data injection attacks against the distributed energy routing process.

Recall that using these compromised measuring components, the adversary could launch a new class of false data injection attacks, namely the energy deceiving attacks discussed here, to disrupt the energy distribution process. Once again, if a node is denoted as compromised, we mean that the measuring component in the node is compromised by the adversary.

Definition 1: The Energy Deceiving Attack is defined as a typical false data injection attack. In this attack, the adversary can inject either the forged energy or link-state information into the energy request and response message among nodes in order to disrupt the distributed energy distribution process.

Based on the compromised measuring components, the adversary can inject the false data in the following ways: (i) the false quantity of energy that demand-nodes demand (denoted as D_u), (ii) the false quantity of energy that supply-nodes could provide (denoted as P_v), and (iii) the false states of the energy links (denoted as LS_{uv}). Note that u and v are denoted as the IDs of demand-node and supply-node, respectively. Hence, based on the types of
forged data, the energy deceiving attacks can be generally categorized into the following two groups: (i) injecting false energy data, and (ii) injecting false link-state data, which will be discussed one-by-one.

1) Injecting False Energy Data: As the different roles in the energy distribution process, the adversary may compromise either supply-nodes or demand-nodes and launch the energy deceiving attacks. We now discuss those attacks in details.

Energy-request Deceiving Attack: When the adversary compromises the demand-nodes, the energy deceiving attack could be launched on Step 3 in the energy distribution process. That is, the adversary could forge a large quantity of demanded energy, say D_u^*, and send the energy-request messages to all energy-demand nodes in the grid via the compromised measuring components. We denote this type of attack as the energy-request deceiving attack. In this way, the distributed energy routing process will give the false requested energy from the demand-node, which is more than the energy that it truly needs. As a consequence, the compromised demand-node could receive more energy than it truly needs. When the claimed quantity of demanded energy increases, more energy will be wasted because of the limited storage capacity of the demand-node. As the quantity of demanded energy increases, the energy transmission cost will increase as well. In addition, because the quantity of energy that all supply-nodes can provide is limited, a number of nodes will not receive enough energy and energy outage will occur because of the large false quantity of requested energy from demand-nodes.

Energy-supply Deceiving Attack: When the adversary compromises the supply-nodes, the energy deceiving attack could be launched on Step 4 in the energy distribution process. That is, the adversary could forge a false quantity of energy it can truly provide, say P_v^*, and send back the response to demand-nodes in the grid. We denote this type of attack as the energy-supply deceiving attack. Note that this type of attack may not lead to the waste of supplied energy as the above mentioned energy-request deceiving attack does. However, it could incur the increase in energy transmission cost and the number of outage users. In particular, when the adversary forges and claims less energy than the supply-node can truly provide, the total claimed energy that all supply-nodes could provide will be less than the requested energy. When this occurs, more users will be denied of energy. The total energy transmission cost caused by the energy distribution may increase as well. When the adversary forges and claims more energy than the supply-node can truly provide, the supply-node cannot provide enough claimed energy and some demand-nodes fail to obtain enough requested energy. When this occurs, the supply of energy in the grid is disrupted.

2) Injecting False Link-state Data: Besides forging the energy information, the energy deceiving attacks can forge the false state of energy links, and inject the false link-state information into the energy routing process. The consequence of injecting false link-state data could incur high energy transmission cost and imbalance of energy
supply because of transmitting energy on invalid energy links, and establishing the energy-acnode defined below.

Definition 2: Energy-acnode is defined as one or multiple nodes, which are isolated from the grid in terms of energy supply and demand. The adversary could inject the forged invalid state of energy links associated with the compromised nodes into the grid. As such, some nodes in the grid will become isolated and cannot exchange energy with other nodes in the grid.

As shown in Fig. 2, when the adversary injects the false information of link states, and makes energy link \(L_{BE} \) and \(L_{EH} \) invalid, the node \(E \) will become an energy-acnode. When a node (or a group of nodes) becomes energy-acnode, it will not be able to obtain energy from the grid and provide residual energy to the grid. As we can see, the more the energy-acnodes exist in the grid, the better chances are that the grid will not provide effective energy distribution to users.

When the adversary injects the false state information of the energy link (no matter whether the adversary launches the attack from supply-nodes or demand-nodes), we have the following two options: (i) **Claiming an invalid energy link as valid.** When this occurs, the energy routing process will assign the energy transmission task to invalid energy links. This causes some demand-nodes to fail in receiving enough requested energy; (ii) **Claiming a valid energy link as invalid.** When this occurs, it will increase the energy transmission cost and the probability of nodes to become energy-acnode. In particular, in option (ii), the transmission cost will increase rapidly when a small number of valid links are claimed as invalid. Nevertheless, the cost will decrease when the number of claimed invalid links exceeds a level, because the number of energy-acnodes will increase rapidly and the number of demand-nodes and the quantity of demanded energy will decrease as well.

IV. Modeling and Analysis

We now model and analyze the impact of proposed attacks on the distributed energy routing process in the grid. Our analysis metrics include the supplied energy loss, the energy transmission cost, and the number of outage nodes. Without loss of generality, we denote the users in smart grid as nodes and denote the energy and communication links as lines. We consider the following general attacks, in which the adversary can manipulate the quantity of energy supply, the quantity of energy response, and the link states of energy transmission, respectively.

A. Impact of Injecting False Energy Data

As we discussed in Section III, the adversary can compromise either the supply-nodes or demand-nodes and launch the energy deceiving attacks. We now analyze the impact of those attacks in details below.

1) **Impact of Energy-request Deceiving Attack:** When the adversary compromises the demand-nodes, the adversary could forge a large quantity of requested energy, say \(D_u^* \), to replace the normal demanded energy, say \(D_u \), and send the false energy-request messages to energy-demand nodes in the grid via the compromised nodes on Step 3 during the energy routing process.

Supplied Energy Loss: The adversary can compromise a demand-node and forge the demanded energy from the compromised node. The forged requested energy, say \(D_u^* \), will be always larger than the true requested energy, say \(D_u \), in order to pose the supplied energy loss. When the grid has enough energy to meet the demands of all demand-nodes, the compromised node will receive more energy than it truly requests due to the energy-request deceiving attack. Because of the limited storage capacity, the compromised node will lose the extra received energy, and the quantity of supplied energy loss can be denoted as \(\Delta D_u = D_u^* - D_u \). Obviously, if \(n \) demand-nodes are compromised in the grid, the quantity of supplied energy loss in the grid is

\[
\Delta D^* = \sum_{u_i \in N_{D^*}} \Delta D_{u_i}.
\]

where \(N_{D^*} \) is the set of compromised node and \(u_i \) is the ID of the compromised node. Obviously, when the grid has enough energy for demand-nodes, to cause more supplied energy loss, the larger number of demand-nodes needs to be compromised and the larger forged demanded energy needs to be claimed. Unfortunately, a node could not persistently claim too much quantity of demanded energy because this will lead to the detection of attacks.

To avoid the detection, the claimed quantity of demanded energy should be limited by an energy threshold. It is defined as the upper limit of requested energy of a demand-node that the adversary can forge, denoted as \(T_E \). Because the energy threshold limits the forged requested energy, another parameter that the adversary may play is to increase the number of compromised nodes. Nevertheless, the adversary only has limited attacking resources
and there are some tradeoffs for the adversary to either compromise more nodes or forge larger quantity of energy related data. Note that we only analyzed the supplied energy loss with the assumption that the grid can provide enough energy to all demand-nodes in this subsection even if the grid is affected by energy-request deceiving attacks. We will further analyze the supplied energy loss in subsection IV.A-1 in the scenario, where the grid could not provide enough energy to all demand-nodes.

Energy Transmission Cost: When the compromised nodes claim themselves as demand-nodes, it will not only cause the loss of supplied energy, but also incur the increase in energy transmission cost. Recall that one of the main goals of the distributed energy routing process is to minimize the energy transmission cost. Unfortunately, when the grid has enough energy to meet the requests from all demand-nodes, the false energy request data from compromised demand-node could mislead the routing decision of distributed energy routing process. As the consequence, the obtained routes will incur a higher energy transmission cost.

If n demand-nodes are compromised in the grid and all compromised nodes claim forged request energy, the energy route will be derived by solving the following equations

Objective.

$$\min \left\{ \text{Cost}_n = \frac{1}{2} \sum_{L_{ij} \in L} (|E_{ij}(n)| \cdot \text{Cost}_{ij}) \right\}$$

S.t.

$$\begin{cases}
\forall v \in N_P, & \sum_{i \in N_v} E_{vi} \leq P_v \\
\forall u \in N_D, & \sum_{j \in N_u} E_{uj} = -D_u \\
\forall u^* \in N_D^*, & \sum_{j \in N_u^*} E_{uj^*} = -D_{u^*} \leq T_E \\
\forall L_{ij} \in L, & E_{ij} = -E_{ji}
\end{cases} \tag{4}$$

where D_{u^*} is the forged demanded energy at compromised node u^*, and Cost_n is the minimum cost of energy transmission under the attack. According to Equations (1) and (4), the increased cost for transmitting energy become

$$\Delta \text{Cost}_n = \min(\text{Cost}_n) - \min(\text{Cost}). \tag{5}$$

According to Equation (5), only if $\Delta \text{Cost}_n > 0$, the cost of energy transmission will increase due to the energy-request deceiving attack.

Assume that the normal and effected energy assignment in the grid are E and E^* obtained by Equation (1) and (4), respectively. To ensure the existence of solutions of Equation (4), Equation (6) listed below must have solutions

$$\begin{cases}
\forall v \in N_P, & A_v \cdot (E^* - E) \leq P_v - P_v' \\
\forall u \in N_D, & A_u \cdot (E^* - E) = 0 \\
\forall u^* \in N_D^*, & A_{u^*} \cdot (E^* - E) = -D_{u^*} + D_u
\end{cases} \tag{6}$$

where $E^* = [E_1^*, E_2^*, \cdots, E_l^*]^T$, E_i^* represents the energy transmitted on energy link L_i, and l is the number of energy links in the grid, $A_i = [a_{ij}, a_{ij}, \cdots, a_{ij_m}]$, a_{ij} is $\{-1, 0, 1\}$, M is the number of nodes in the grid. When $a_{ij} = 0$, there is no energy link between node i and node j. When $a_{ij} = -1$, the energy is transmitted from node j to node i via the energy link. When $a_{ij} = 1$, the energy is transmitted from node i to node j via the energy link.

Equation (6) shows that, when the grid can provide enough energy to all demand-nodes and the grid is under the attack, the demanded-energy raised by the deceiving attack could obtain the false energy routes by injecting false requested energy information. The increased cost of energy transmission should be the minimum cost of energy transmission caused by transmitting $|E^* - E|$, based on Equations (4) and (6). In addition, with the increase of forged requested energy D_{u^*} and the number of compromised nodes, $|E^* - E|$ increases. Then the increased cost of energy transmission ΔCost_n increases as well and we have $\Delta \text{Cost}_n > 0$. Hence, the energy-request deceiving attack can certainly increase the energy transmission cost.

In this subsection, we only analyze the increased energy transmission cost with the assumption that the grid can provide enough energy to all demand-nodes, even if the grid is attacked by energy-request deceiving attack. When the grid could not provide enough energy to demand-nodes with the effect of energy-request deceiving attack, the
energy transmission cost will not increase. The reason is that, the quantity of energy to be provided for demand-nodes may decrease, because lots of demand-nodes will be ignored by the distributed energy routing process, and the grid will not provide the requested energy to those nodes.

Number of Outage Users: The above analysis is based on the assumption that all supply-nodes can provide enough energy to all demand-nodes in the grid, even if the grid is affected by the energy-request deceiving attack. However, supply-nodes may not provide enough energy to demand-nodes in some cases, such as suffering from disaster or during the surge in electricity demand or affected by energy-request deceiving attack. Because of the insufficient supply of energy, some nodes in the grid will become outage to ensure other nodes’ reliable energy supply.

Recall that when supply-nodes could not provide enough energy to demand-nodes, the distributed energy process will maximize the number of demand-nodes that could receive enough requested energy and minimize the number of outage demand-nodes. The formalization of this can be represented by

\[
\text{Objective. } \min \left\{ \| N_D' \| \right\}
\]

\[
\text{S.t. } \sum_{u \in N_D'} D_u \geq \sum_{u \in N_D} D_u - \sum_{v \in N_P} P_v,
\]

where \(\| N_D' \| \) denotes as the number of elements in \(N_D' \), \(N_D' \) is the set of outage demand-nodes, \(N_D \) is the set of all demand-nodes, and we have \(N_D' \subseteq N_D \).

Obviously, to increase the number of outage nodes in the grid, the adversary should increase the minimum \(\| N_D' \| \) via the energy-request deceiving attack. To pose more serious damages, the adversary is prone to let more normal demand-nodes into set \(N_D' \) and more compromised demand-nodes into set \(N_D - N_D' \). In this case, more normal demand-nodes will be outage, and more compromised demand-nodes provided claimed requested energy to be used by the adversary to pose other damages such as supplied energy loss. Because the elements of set \(N_D' \) are identified by the requested energy from the demand-node, the adversary could select a proper \(D_u^* \) for the compromised demand-node \(u^* \). This sets more normal demand-nodes in set \(N_D' \) and more compromised demand-nodes in \(N_D - N_D' \). In the following, we first describe how the distributed energy routing process selects these demand-nodes for set \(N_D' \) in normal case. We then describe how to select compromised demand-nodes to launch the energy-request deceiving attack such that more nodes become outage.

Assume that the number of demand-nodes and supply-nodes in the grid are \(x \) and \(y \), respectively. Then, we have \(x + y \leq M \), where \(M \) is the total number of nodes in the grid. In normal case, all demand-nodes could be sorted based on their requested energy. The order should be

\[
D_{u_1} \geq D_{u_2} \geq \cdots \geq D_{u_x},
\]

where \(u_i \) is the ID of demand-node. To ensure the minimum number of demand-nodes to become outage, the distributed energy routing process will not provide energy for these nodes from demand-node \(u_1 \) to demand-node \(u_s \), where \(u_s \) will meet the condition listed below

\[
\sum_{j=s}^{x} D_{u_j} \geq \sum_{v \in N_P} P_v \geq \sum_{j=s+1}^{x} D_{u_j},
\]

Based on the above scheme, in normal case the distributed energy process selects demand-nodes from \(u_1 \) to \(u_s \) to establish set \(N_D' \).

With the energy-request deceiving attack which controls \(n \) compromised nodes, based on Equations (8) and (9), compromising demand-nodes with lower requested energy will make more compromised demand-nodes in set \(N_D - N_D' \) and more normal demand-nodes in set \(N_D' \). With the compromising demand-nodes, the relation between the maximum number of outage nodes and the increased requested energy of compromised demand-nodes is listed.
In the grid should increase from s to k, energy of Equation (10) tells that when the forged energy from each compromised node is smaller than the normal requested energy deceiving attack with both compromised demand-nodes and supply-nodes in the grid can be derived by combining the analysis in subsections IV.A-1 and IV.A-2. Note that, in this subsection, we consider only the compromised supply-nodes that exist in the grid, and the impact of energy deceiving attack with compromised supply-nodes will increase by $(k - s)$. The damages of energy-request deceiving attack would be maximum only if the normal demanded energy of these n compromised demand-nodes are n smallest ones in all demand-nodes. Hence, in the following analysis, we assume that the adversary compromises n demand-nodes, which request n least amount of energy. When $n + k < x$, all n compromised demand-nodes are in set $N_D - N'_D$. Note that, in this case, the energy requests from all n compromised demand-nodes will be satisfied by the distributed energy routing process, and the supplied energy loss will occur, and the quantity of supplied energy loss can be

$$
\Delta D^a = \sum_{u_j^* \in N_{D^*}} (D_{u_j^*} - D_{u_j^*}) \leq \sum_{u_j^* \in N_{D^*}} (D_{u_k} - D_{u_j^*}).
$$

When $n + k \geq x$, only $(x - k)$ compromised demand-nodes are in set $N_D - N'_D$. In this case, only energy requests from $(x - k)$ compromised demand-nodes will be satisfied, and the quantity of supplied energy loss can be

$$
\Delta D^a = \sum_{j=k+1}^{x} (D_{u_j^*} - D_{u_j^*}) \leq \sum_{j=k+1}^{x} (D_{u_k} - D_{u_j^*}).
$$

2) Impact of Energy-supply Deceiving Attack: When the adversary compromises the nodes and manipulates them to become supply-nodes, the adversary could forge false energy, say P_v^*, for the compromised supply-nodes to replace the normal one, say P_v, and send them to all demand-nodes during the energy routing process. Note that, in this subsection, we consider only the compromised supply-nodes that exist in the grid, and the impact of energy deceiving attack with both compromised demand-nodes and supply-nodes in the grid can be derived by combining the analysis in subsections IV.A-1 and IV.A-2.

When the grid is under the energy-supply deceiving attack, the formalization of distributed energy routing process can be denoted as

$$
Objective. \quad \text{Min} \left\{ \text{Cost}_n^* = \frac{1}{2} \cdot \sum_{L_{ij} \in L} (|E_{ij}(n)| \cdot \text{Cost}_{ij}) \right\}
$$

$$
S.t.
\begin{align*}
\forall v \in N_P, & \sum_{i \in N_v} E_{vi} \leq P_v \\
\forall u \in N_D, & \sum_{j \in N_u} E_{uj} = -D_u \\
\forall v^* \in N_{P^*}, & \sum_{i \in N_{v^*}} E_{v^*i} \leq P_{v^*}^* \\
\forall L_{ij} \in L, & E_{ij} = -E_{ji}
\end{align*}
$$

where P_{v^*} is the energy that compromised supply-node v^* claims to provide.
In the energy-supply deceiving attack, both claiming larger and smaller energy than the normal energy that these compromised supply-nodes can provide, the energy distribution process will be disrupted. Hence, in the following we analyze the damages of energy-supply deceiving attack in two cases: (i) Claiming more energy than the supply-node can provide, and (ii) Claiming less energy than the supply-node can provide. The damages of energy-supply deceiving attack analyzed in this subsection only include the energy transmission cost and the number of outage users, while the supplied energy loss will not be considered. This can be explained as because the supplied energy loss depends on the quantity of increased requested energy of compromised demand-nodes, the loss of supplied energy will not occur if no compromised demand-nodes exist.

Claiming more energy than the supply-node can provide: When the adversary claims more energy than what the compromised supply-nodes can provide, the cost of energy transmission may not increase, but instead decrease. This is because in order to disrupt the normal energy routes, the energy-supply deceiving attack should create new energy routes, which are more optimal than the normal energy routes, and then the normal energy routes will be replaced by the new ones. When the adversary only claims more energy than the compromised supply-nodes can provide, by comparing Equations (1) and (13), we can find that the solutions of Equation (1) are included in the solutions of Equation (13). Hence, the new energy routes obtained by Equation (13) must be more optimal than the normal ones obtained by Equation (1). Otherwise, the normal energy routes would not be replaced by the new energy routes, and no damage will occur. Hence, when the adversary fakes some supply-nodes and wants to disrupt the energy transmission in the grid, the forged energy \(P^*_{vu} \) must make the new energy routes, which are more optimal than the normal energy routes. That is, the cost for transmitting energy will be reduced.

Although claiming more energy than what supply-nodes can provide will not pose the supplied energy loss and the increase in energy transmission cost, it may disrupt the supply of energy to demand-nodes and cause nodes outage. Theorem 1 shows the condition for the energy-supply deceiving attack to disrupt the energy transmission process.

Theorem 1: To disrupt the energy transmission in the grid (i.e., replacing the normal energy routes by the new energy routes caused by energy-supply deceiving attack), a compromised supply-node should be asked by energy routing process to provide more energy than it can truly provide.

The detailed proof of Theorem 1 can be found in Appendix A. When compromised supply-nodes claims more energy than it can provide, some demand-nodes will not receive the expected requested energy, and ultimately cause the imbalance of energy supply in the grid. Note that, it may not disrupt the energy transmission if the adversary randomly compromises supply-nodes and launches the energy-supply deceiving attack, because it may not satisfy the condition defined in Theorem 1. As only compromising some special supply-nodes could make the condition to be met and disrupt the energy distribution, we will consider how to construct these specific supply-nodes below.

Recall that in the distributed energy routing process, its main goal is to find the optimal energy routes to distribute energy with the minimum cost of energy transmission. To this end, Theorem 2 shows the condition where each supply-node must use the shortest path to transmit energy to demand-nodes.

Theorem 2: In the distributed energy routing process, each supply-node uses the shortest path to transmit energy to demand-nodes. In particular, for each demand-node \(u \), each supply-node \(v \) uses the shortest path between \(u \) and \(v \) to transmit energy, and the transmitted energy is \(P'_{vu} \), and \(P'_{vu} \in [0, P_v] \), where the weight of each energy link is the cost of energy transmission.

The detailed proof of Theorem 2 can be found in Appendix B. Assume that the weight of the path between \(v_1 \) and \(u \) is \(W_{vu} \), we can sort the shortest paths of all supply-nodes to the demand-node \(u \) in an ascending order by

\[
W_{v_1 u} \leq W_{v_{y+1} u} \leq \cdots \leq W_{v_y u}, \tag{14}
\]

where \(y \) is the number of supply-nodes in the grid. As we can see, the basic idea of distributed energy routing process is to find an optimal set of \(P'_{vu} \), which can make the minimum cost of energy transmission. The total cost of energy transmission will be minimal one, when a demand-node receives as much energy as possible from a supply-node, and the shortest path from the supply-node to the demand-node is the smallest one comparing with the shortest paths from other supply-nodes to the demand-node. For example, in normal case, the distributed energy routing process makes demand-node \(u \) receiving as much energy as possible from supply-node \(v_1 \) to minimize the total energy transmission cost, because the shortest path between \(v_1 \) and \(u \) has the smallest weight. Hence, if supply-node \(v_1 \) is compromised and claims more energy than it can provide, i.e., \(P'_{v_1 u} > P_{v_1 u} \), the distributed energy routing process, for a demand-node \(u \), will increase the \(P'_{v_1 u} \) and reduce \(P_{v_1 u} \) to decrease the total cost of energy.
transmission in the grid, where \(v_i \) represents set of supply-nodes except \(v_1 \). Then, the supply-node \(v_1 \) may not provide enough energy \(P'_{v_1,u} \) for demand-node \(u \) because of \(P^*_{v_1} > P_{v_1} \), and the energy transmission in the grid will be broken. The impacted demand-nodes should be ones on the shortest path between \(v_1 \) and \(u \). Note that the shortest path between two nodes could be obtained by Dijkstra algorithm.

Because the adversary can easily obtain the topology of the grid, the adversary can obtain a subset of supply-nodes, say \(V \). For each supply-node in \(V \), a demand-node must exist in the grid, such that the shortest path between the supply-node and the demand-node is the shortest one comparing with the shortest paths between other supply-nodes and the demand-nodes. For example, based on Equation (14), supply-node \(v_1 \) should in set \(V \).

According to above analysis, if the adversary compromises supply-nodes in set \(V \) and launches the energy-supply deceiving attack by claiming more energy than those compromised supply-nodes can provide, the attack will disrupt the energy transmission in the grid. This will make some demand-nodes fail to obtain requested energy. The more supply-nodes to be compromised, the more serious damage will occur. Because the grid topology is relatively static, the adversary can easily obtain set \(V \) and compromise the corresponding supply-nodes.

In the above analysis, we consider the scenario where the amount of energy provided by supply-nodes is larger than the amount of energy requested by demand-nodes. When there is insufficient energy in the grid, the impact of attack can be analyzed in the similar manner. The only difference is that we need to eliminate some demand-nodes to ensure that other demand-nodes can be provided enough energy.

Claiming less energy than the supply-node can provide: In the energy-supply deceiving attack, the adversary can claim less amount of energy than what the supply-node can provide. In this case, it may increase the energy transmission cost and the number of outage nodes.

As shown by the analytical results in the previous subsection, with the increase of \(P'_{v_1,u} \), the total cost of energy transmission decreases. To the contrary, with the decrease of \(P'_{v_1,u} \), the total cost of energy transmission increases. Hence, when the adversary obtains set \(V \) and compromises some supply-nodes in set \(V \) and makes these node claim less amount of energy than they can provide, i.e., \(P^*_{v_1} < P_{v_1} \), the total cost of energy transmission in the grid will increase. The increased cost can be denoted as \((\text{Cost}^*_n - \text{Cost})\), where \(\text{Cost}^*_n \) and \(\text{Cost} \) are the total cost of energy transmission with the attack and without the attack, and they can be derived by Equations (13) and (1), respectively.

More seriously, if

\[
\sum_{v' \in N_{P^*}} P^*_{v'} + \sum_{v \in N_P} P_v < \sum_{u \in N_D} D_u, \tag{15}
\]

where \(N_{P^*} \) is the set of compromised supply-nodes, \(N_P \) is the set of normal supply-nodes, and \(N_D \) is the set of all demand-nodes, the attack would make some demand-nodes outage. Assume that the number of outage nodes in the grid without the attack is \(s \), where \(s \) is in \([0, x]\), and \(x \) is the number of demand-nodes in the grid. When \(s \) is equal to “0”, no outage node exists in the grid without the attack. When the energy-supply deceiving attack meet the condition in Equation (15), the increased number of outage nodes caused by the attack is \((k - s)\), where \(k \) represents the total number of outage nodes and can be derived by solving the following optimization problem:

Objective. \(k = \text{Min} \left\{ \| N' \| \right\} \)

S.t.

\[
\sum_{u \in N_D} D_u \geq \sum_{u \in N_D} D_u - \sum_{v \in N_P} P_v - \sum_{v^* \in N_{P^*}} P^*_{v^*}. \tag{16}
\]

B. Impact of Injecting False Link-state Data

Through the compromised nodes, the adversary can not only inject the false energy information, but also inject false link-state information to disrupt the energy distribution in the grid. Recall that *Step 4* in the energy routing process, the compromised nodes can forge false link-state, say \(LS^*_{v_1} \), to replace the normal ones, say \(LS_{v_1} \), and send the false link-state information to the demand-node.

Because energy links are commonly deployed in open fields, the broken circuit may happen due to many reasons. In this case, the adversary may claim the invalid energy links as valid, and the distributed energy routing process may still assign the energy transmission task to these links. Then, some demand-nodes could not receive energy because these links cannot accomplish the assigned task, and the energy transmission in the grid will be disrupted.
Besides claiming invalid energy links as valid, the adversary may claim valid energy links as invalid, which will incur the increase of total cost of energy transmission in the grid. In addition, when the states of all energy links associated with a node are claimed as invalid, the node will become an energy-acnode defined in Definition 2. That is, the node cannot get energy from other nodes and provide energy to other nodes. In the following, we analyze the impact of this attack in the following two cases: (i) claiming valid energy links as invalid, and (ii) claiming invalid energy links as valid.

1) Claiming invalid energy links as valid: If an invalid energy link is claimed as a valid by the adversary, the distributed energy routing process may transmit energy through this link, which may disrupt energy transmission in the grid. According to Theorem 2, only if the claimed valid link is the part of a shortest path between a pair of demand-nodes and supply-nodes in set V, the energy link may be assigned any energy to transmit, where set V has the same definition in subsection IV.A-2. In this case, all demand-nodes in the shortest path will be affected by the injected false link-state information and cannot receive enough requested energy. Hence, to disrupt the supply of energy in the grid, the claimed valid link must be a part of the shortest path described above. Fortunately, it is difficult for the invalid links to meet the above conditions, and then the adversary could not claim these invalid links as valid to disrupt the supply of energy. Thus, the damage caused by claiming invalid links as valid would occur with a lower probability.

2) Claiming valid energy links as invalid: If a valid energy link is claimed to be an invalid by the adversary, energy that should be transmitted on the link will be assigned for other links by the distributed energy routing process, posing the increase of total energy transmission cost. However, randomly selecting a valid link and claiming it as invalid one may not cause the increased cost, because the distributed energy routing process may not assign any energy transmission task for the randomly selected link in normal case. Based on Theorem 2, as long as the selected link is part of the shortest path between a pair of demand-nodes and supply-nodes in set V, the distributed energy routing process will assign energy transmission task for the selected link in the normal case. Then, claiming the selected links as an invalid will cause the increased cost because the energy that was originally transmitted on the link will be reassigned to other links. This can be explained as: when the adversary claims the selected link as invalid, the shortest path including the selected link will be invalid, and energy originally transmitted on the shortest path will be retransmitted on other paths, and total cost will be increased, because, based on Theorem 2, the cost of energy transmission on the shortest path is smaller than the cost on other paths. Note that, the selected link could be part of several shortest-paths between several pairs of demand-nodes and supply-nodes in set V. In a normal case, energy link with lower transmission cost may transmit more energy, and thus the results of selecting compromised energy links based on the way mentioned above will be similar to the results of selecting these links based on their capacity, i.e., the great quantity of energy transmitted on the links.

In addition, claiming multiple links as invalid may lead to energy-acnode as defined in Definition 2. Energy-acnode cannot exchange energy with other nodes in the grid, and thus a demand-node will be outage if it becomes the energy-acnode. The probability of a normal node becoming an energy-acnode is determined by the number of energy links it connects to, because a node becomes an energy-acnode only if all energy links that the node connects to are claimed as invalid. Multiple connecting demand-nodes may be treated as one logical-node. The adversary may let the logical-node become an energy-acnode, such as demand-node D and F shown in Fig. 2, where more serious damage to the grid will be caused, and the greater probability of successfully launching attack will be achieved with less attack resources.

The increased number of energy-acnodes in the grid will reduce the energy transmission cost because of the smaller number of demand-nodes and the quantity of demanded energy. That is, some demand-nodes become energy-acnodes and isolated from the grid. Hence, the transmission cost will increase rapidly when a small number of valid links are claimed as invalid. Nevertheless, the cost will decrease when the number of claimed invalid links exceeds a level, because the number of energy-acnodes increases.

V. PERFORMANCE EVALUATION

A. Evaluation Methodology

To demonstrate the impact of energy deceiving attacks on the distributed energy routing process, we conduct performance evaluation based on the topology of the US smart grid [2], as shown in Fig. 3. We select one major city of individual states as a node in the topology. The backbone of the interstate power transmission is based on
the connection between these nodes. The fifty US states are selected as simulation objects, which are divided into five regions during the simulations as shown in Fig. 3.

The data set used for the simulation is based on “2009 US Energy Information Administration State Electricity Profiles” [6]. In order to access the capacity of energy link, the averaged real-time data per second on each link, is computed based on averaged 2009 US interstate energy transmission data. The length of the energy link which represents the distance between two paired nodes is computed using Google map. Besides the number of compromised nodes, another parameter to measure the strength of attacks is the quantity of energy data to be manipulated. Obviously, the larger the quantity of energy data to be manipulated, the stronger the attack implies.

To measure the impact of energy deceiving attacks, we consider the increased transmission cost, the user outage rate and supplied energy loss as the key metrics. The detailed definition of the metrics are listed as follows: (i) Increased transmission cost: It is defined as the increased total energy transmission cost caused by forged energy data, which is defined in Section IV.A-1. (ii) User outage rate: With the manipulated quantity of energy information, the total energy supply may not satisfy all the requests from the nodes, and some nodes will become outage to ensure the reliable energy support of other nodes in the grid. This metrics is defined and analyzed in Section IV.A-1. (iii) Supplied energy loss: The forged energy requests will make the waste of the energy supply. Our simulation data will focus on these metrics to evaluate the impact of attacks.

Recalling the cost definition in our previous paper [15], the data transmission cost between two nodes can be derived by Equation (2) in [15]. All simulations in this paper were conducted using Matlab 7.0. We assume the energy threshold is $20 units power, which is the upper limit to avoid the detection. When the total energy supply cannot satisfy the total energy demand, we ensure that the number of outage demand-nodes are minimal.

B. Evaluation Results

1) Impact on Increased Energy Transmission Cost: In this set of simulations, we designate 22 states of US as energy-demand states. Fig. 4 shows the impact of the compromised demand-node rate on the increased energy transmission cost. As we can see in this figure, with the increase in the compromised demand-node rate, the energy transmission cost increases almost linearly. The different curves in the figure show the different quantity of forged energy request. Obviously, the larger the quantity of energy request data to be manipulated, the more energy transmission cost is increased. When all demand nodes are compromised and forged 15 units energy request, there is $19.118MM$ cost increase. The result matches with the analytical result in Section IV.A-1.

When the energy-supply nodes are compromised, Fig. 5 depicts the impact of the compromised supply-node rate on the increased energy transmission cost. As we can see, with the increase in the compromised supply-node rate, the energy transmission cost increases as well. When more quantity of energy data is manipulated to reduce the energy supply, the energy transmission cost becomes higher. For example, if 84.6% of supply-nodes are compromised, and each supply-nodes is manipulated to reduce 10 units supply, the increased energy transmission cost approaches $6.68MM$.

For forging the false state of energy links, Fig. 6 illustrates that when the link is claimed as invalid, the attack impact on the energy transmission cost. From this figure, we can observe that, when the compromised energy link rate is small, the energy transmission cost grows linearly. With the increase in compromised energy link rate, the number of energy-demand nodes and energy-supply nodes reduces. When all states of the links are manipulated as invalid, there is no energy transmission in the grid so the energy transmission cost will approach zero. As shown in Fig. 6, selecting compromised energy links based on capacity lead to more serious effect for transmission cost.
than selecting compromised links randomly, because randomly selecting compromised links will not always cause energy routing changes as we shown in IV.B.2.

2) Impact on User Outage Rate: The forged energy data will result in imbalance between energy-supply and energy-demand nodes. Fig. 7 depicts the user outage rate vs. the compromised demand-node rate. As we can see, when the quantity of energy data in the compromised node is small, the user outage rate is not significant. When the large energy requests caused by the attack, the user outage rate increases rapidly with the increase in the compromised demand-node rate. When all demand-nodes are compromised, 600 units demand is manipulated at each compromised node, the user outage rate approaches 36.3%.

Fig. 8 depicts the impact of user outage rate vs. the number of supply-nodes being compromised. When a small number of supply-nodes are compromised or the small quantity of energy supply is manipulated, the total energy supply can meet the total energy demand. Obviously, in the beginning of these curves in the figure, because there is no influence on demand-nodes, user outage rate is almost zero. When around 15% supply-node is compromised, the user outage rate increases rapidly.

Fig. 9 shows the user outage rate vs. the compromised energy link rate. As we can see, with the increase in the compromised energy link rate, the outage nodes increases smoothly at the beginning. This indicates that the small number of the energy links claimed as invalid has a little impact on the effectiveness of energy distribution process. Nevertheless, with the increase in the compromised energy link rate, more nodes cannot obtain enough energy from the grid, leading to more nodes becoming outage. When the compromised link ratio is around 30%, the user outage rate grows rapidly. It also shows that selecting compromised energy links based on capacity lead to greater user outage rate than selecting compromised links randomly, which matches our analytical results well in Section IV.B.2.

3) Impact on Supplied Energy Loss: To investigate the impact on energy supply loss, we show the relationship between the supplied energy loss and the compromised demand-node rate in Fig. 10. When forged energy request increases, more energy is supplied to meet these forged energy requests. As we can see, the supplied energy loss increases in a linear fashion with the compromised demand-node rate. When the supplied energy loss grows to a point, it will stay in the same value. For example, for the 600 units demand manipulated in each node, when all the demand-nodes are compromised, the energy supply loss will be 8400 MW, which is the same supplied energy loss as the scenario, where 63.6% of demand-nodes are compromised. Because the quantity of the energy requests is manipulated, more demand-nodes are outage. When compromised demand-nodes become outage, the forged energy requests cannot be generated by these nodes.
VI. RELATED WORKS

To investigate the false data injection attacks in the smart grid, much research efforts have been paid in the recent past [17], [20], [10], [8], [25], [13], [14]. For example, Liu et al. [17] introduced the scheme of false date injection attack against power state estimation. In this proposed attack, the adversary can manipulate the power state estimation without being detected by the bad data detector. Dan et al. [10] proposed a method for computing one of the two security indices [20]. To defend against these false data attacks on power state estimators, Bobba et al. [8] developed schemes to protect a selected set of meter measurements. Kosut et al. [13] developed computationally efficient heuristics to detect these types of attacks. More recently, the study of false data injection attacks has been extended to more areas [22], [24]. For example, Xie et al. [24] investigated the impact of false data injection attacks in deregulated electricity market operations, and showed that the adversary can obtain unlawful financial benefits.

Different from the existing work, which mainly focuses on the false data injection attacks against state estimation and electricity market, our research focuses on the false data injection attacks against the distributed energy routing process in smart grid. Our paper establishes the foundation for improving distributed energy routing process to secure the energy distribution in the smart grid.

VII. CONCLUSION

In this paper, we investigated the security of distributed energy routing process. We considered several attacks, in which the adversary may manipulate the quantity of energy supply, the quality of energy response, and the link state of energy transmission, respectively. We modeled and analyzed the impact of those attacks on the effectiveness of energy routing in terms of supplied energy loss, energy transmission cost, and the number of outage nodes. Via extensive simulation, our data shows that our investigated attacks could significantly disrupt the effectiveness of energy distribution process. To the best of our knowledge, this work is the first to systematically study the false data injection attacks against distributed energy routing process in the smart grid. As an ongoing study, we are investigating how to defend against those attacks and make the energy distribution in smart grid more secured and resilient.

REFERENCES

APPENDIX A: PROOF OF THEOREM 1

Proof: If \(P_{v^*}^t \leq P_{v^*} \), with the energy-supply deceiving attack, \(v^* \) still has enough energy to meet the request through the distributed energy routing process. To disrupt the energy transmission, the cost of energy transmission when the attack is launched, say \(\text{Cost}^* \), should be smaller than the cost of energy transmission when the attack is not launched, say \(\text{Cost} \). That is, \(\text{Cost}^* < \text{Cost} \). In addition, we have \(P_{v^*}^t \leq P_{v^*} \), which means that \(P_{v^*}^t \) can be one choice to provide energy for demand-nodes when no attack exists. However, \(P_{v^*}^t(t + 1) \) is not the optimal one. Hence, according to Equation (1), we have \(\text{Cost}^* \geq \text{Cost} \), which is conflict with \(\text{Cost}^* < \text{Cost} \). Hence, to disrupt the energy transmission, the energy that it needs to provide must be larger than the energy that it can provide, i.e., \(P_{v^*}^t > P_{v^*} \).

APPENDIX B: PROOF OF THEOREM 2

Proof: Assume that a supply-node \(v \) does not transmit the energy to demand-node \(u \) with the shortest path, and the transmitted energy is \(P_{vu}^t \). Hence, the transmission cost caused by \(P_{vu}^t \), say \(\text{Cost'}(P_{vu}^t) \), is larger than the energy transmission cost for transmitting \(P_{vu}^t \) with the shortest path, say \(\text{Cost}(P_{vu}^t) \), i.e., \(\text{Cost'}(P_{vu}^t) > \text{Cost}(P_{vu}^t) \). Hence, the total cost of energy transmission in the grid is

\[
\text{Cost'} = \sum_{v \in N_P} \sum_{u \in N_D} \text{Cost'}(P_{vu}^t) > \sum_{v \in N_P} \sum_{u \in N_D} \text{Cost}(P_{vu}^t) = \text{Cost},
\]

where \(\text{Cost'} \) and \(\text{Cost} \) are the cost of energy transmission not via the shortest path and via the shortest path, respectively. \(\text{Cost'} > \text{Cost} \) conflicts with the optimal solutions based on Equation (1). Hence, each supply-node always uses the shortest path to transmit energy for each demand-node.